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3. Entry into the building of lightning currents on 
the overhead or buried conductors of services 
(electric supply lines, cable TV, telephone lines 
or gas lines). 

The first two of these indirect effects result in moderately high 
voltages on any metalwork involved, but relatively low current 
levels of short duration [13]. For example, voltages from both 
indirect effects may exceed several hundred thousand volts, 
quite sufficient to result in flashover between adjacent conduc-
tors that are not effectively electrically bonded together. How-
ever, the currents from such indirect effects rarely exceed a 
few hundred amps and duration of the current pulses is typi-
cally only several tens of microseconds, or even shorter.  A 
non-connecting upward leader may be expected to carry a total 
electric charge of about 0.01 coulombs.  The induced surge on 
a 10 m long conductor will be in the order of 10 to 100 amps 
with durations of from a few microseconds to no longer than 
50 microseconds [12].  The electrical energy involved in both 
of these two indirect events is orders of magnitude too small to 
directly ignite flammable materials. 

Indirect lightning events frequently cause tripped electrical 
circuit breakers on the power systems of the residence, This is 
indicative of the flow of fault current that is likely caused by 
lightning-induced overvoltages. Ignition of fire from indirect 
lightning events seems most likely to be the result of damage 
to electrical supply systems caused by flashover between 
energized conductors or between conductors and grounded 
metalwork.  The latter includes water and gas pipes, and the 
chassis of equipment, such as TVs, water heaters and air han-
dlers.  Such flashover results in the flow of electrical power 
system fault currents that can provide sufficient energy to ig-
nite flammable materials if these lie in the flashover path.  
Interruption of fault currents by automatic circuit breakers 
may not be fast enough to interrupt these currents, especially 
when a high-resistance path is involved.  Damage to gas pip-
ing systems from electrical fault currents has also been re-
ported [18].    Lack of a low-resistance connection between a 
gas pipe and the power-system ground will hinder the opera-
tion of circuit breakers and protective devices and may result 
in the flow of low magnitude long duration fault current.  
Failure of joints in rigid gas piping, to gas valves in appliances 
and arc damage to thin-walled gas pipes are the occasional 
result of these events. 
 

The third indirect effect may generally be discounted if all 
services entering a building are electrically bonded to the 
building and electric service ground.  In the USA,  the Nation-
al Electrical Codes (NFPA 70 and 70A) require such bonding 
for all incoming metallic conductors with the exception of gas 
pipes.  In the absence of such bonding, significant transient 
electrical currents may enter the building on all unprotected 
services.  These may include overhead and buried electrical, 
telephone and other service conductors and buried gas pipes.   
The most common problem arising from the entry of lightning 
currents on such service conductors is transient overvoltage 
damage to electrical systems, which may lead to fire as de-
scribed above.  It should be emphasized that, although metallic 

water pipes entering a residence are required to be electrically 
bonded to the power system ground, metallic gas pipes which 
enter the building and are similarly distributed throughout it 
are not required to be bonded. 

VI. MATERIAL IGNITED IN LIGHTNING FIRES 
In addition to the publicly-available data, the author has re-
viewed data on fire insurance claims from several lightning-
prone areas of the U.S.A.  Perhaps surprisingly, a large num-
ber of direct strikes to residences caused little damage.  
 
Examination of lightning claims that resulted in severe dam-
age, which, for the purposes of this study, was defined as 
losses over $10,000, showed that about 25% involved struc-
tural damage without fire.  Detailed analysis of the 75% severe 
losses that involved fire was also carried out by the author, 
using all reports that were made available as part of the insur-
ance claims.   
 
NFIRS reports that the majority (75%) of lightning fires are 
caused by direct ignition of structural materials (roofing, clad-
ding, siding and framing), with the second largest cause (20%) 
being damage to electrical systems, with damage to gas sys-
tems resulting in about 5% of fires.  The author’s smaller sur-
vey from insurance claims identified 76 lightning fires, of 
which 41 (54%) were identified as likely resulting from elec-
trical damage, 29 (38%) were identified as direct ignition of 
structure and 6 (8%) were attributed to damage to gas piping 
or appliances.   From this analysis, the author concludes that 
NFIRS reports likely underestimate the fraction of electrical 
fires that result from lightning strikes and that these could 
comprise as much as half of the incidents.  This suggestion is 
supported by a recent report on residential attic fires, which 
finds that, although the material first ignited closely mirrors 
that in lightning strikes, the primary cause is electrical faults 
including arcing.  It is likely that electrical faults ignite struc-
tural materials without the original cause being easily identi-
fied.  Melting of electrical insulation during fires, resulting in 
arcing of the conductors, is a widespread occurrence. The fire 
itself frequently damages wiring and appliances to such an 
extent that determining whether or not the electrical damage 
preceded the fire or resulted from it is not straightforward.   
 
Where investigations of lightning fire are carried out, determi-
nation of whether or not the structure was directly struck is 
also not always easy.  In events where a lightning strike carry-
ing substantial current and energy terminates on a metallic 
object, localized melting of the metal may be good evidence of 
a strike.  The author is aware of a significant number of direct 
strike incidents where lightning terminated on ungrounded 
roof penetrations.  These include antennas, chimney flues and 
caps, and vent pipes from plumbing systems and gas heaters.  
Of these metallic roof penetrations, only antennas are required 
to be grounded and bonded under the current U.S. National 
Electrical Codes (NFPA 70 and 70A).  However, such groun-
ding is often neglected, especially in installations done by the 
home owner. 
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VII. DISCUSSION 
The fire data show that there was a dramatic drop in the over-
all number of residential fires over the past thirty years.  This 
is especially notable when viewed in normalized format; an-
nual fires from all causes dropped from 10,000 down to 3,000 
per million residences over this period.  This improvement in 
fire safety is largely attributed to a combination of improved 
codes of practice for building construction and the installation 
of services, widespread adoption of smoke detectors and en-
hanced public safety education.   
 
On the other hand, residential fires ignited by lightning in-
creased during the same period.  The increase was modest and, 
when normalized to take account of the increase in number of 
residences, the incidence of lightning fires showed a modest 
drop from around 65 per million residences in 1980 to 50 in 
2000.  The past decade has seen a slight increase in residential 
lightning fire incidence to 55 per million residences. 
 
The data suggest that the changes that succeeded in dramati-
cally reducing fires in residences over the past three decades 
had little effect on fires ignited by lightning. 

VIII. MITIGATION OF RESIDENTIAL LIGHTNING FIRES 
There are a number of methods of reducing the incidence of 
residential lightning fires.  The installation of a lightning pro-
tection system would seem an obvious solution.  However, the 
large majority of residences (>95%) in the USA are not 
equipped with lightning protection systems.  Application of 
the applicable code (NFPA 780) is voluntary and rarely in-
voked, leaving the majority of structures unprotected.  These 
unprotected residences often have vulnerable ungrounded me-
tallic roof penetrations, such as chimney flues and vents that 
act as a conduit for these lightning currents.  In these build-
ings, direct lightning strikes and the more severe indirect 
strikes may cause damage, especially to electrical conductors 
and, less frequently, gas lines [19].  
 
Grounding and bonding of these vulnerable conductors is not 
required by the National Electrical Code (NFPA 70) or the 
equivalent code for residences (NFPA 70A).  NFPA Commit-
tees have ruled that these National Electrical Codes are in-
tended to provide guidance on electrical safety and not to ad-
dress lightning protection issues.  These codes therefore have 
no requirements for bonding or grounding ungrounded metal-
lic roof penetrations or gas piping systems.   
 
The evidence suggests that a significant fraction of lightning 
fires, possibly the majority, result from electrical faults.  The 
circuit breakers designed to interrupt these faults may not do 
so sufficiently quickly to avoid ignition where the fault occurs 
through flammable material.  Electrical faults that occur 
through a high-resistance path, for example to unbonded me-
talwork or pipes, may be particularly prone to start fires. One 
example of this is the lightning-caused insulation failure of 
TVs having an ungrounded chassis and double-insulated pow-
er supplies.  Such failures result in the flow of fault current 
from the chassis to any connected TV signal cable, which is 
not designed or intended to carry such currents.  The electrical 

codes of some countries mandate ground-fault leakage relays 
that do appear effective in minimizing at least some of these 
fires, especially those involving high-resistance paths that 
would otherwise not trip a conventional breaker. 
 
The author is also surprised that there is no requirement for the 
grounding and bonding of gas systems in the US National 
Electrical Code, except where these are connected to equip-
ment that also has electrical power.  The absence of such 
bonding results in the development of high voltages and arcing 
when power fault and lightning currents flow on gas pipes in 
residences.  Lack of a low-resistance connection between a 
gas pipe and the power-system ground will hinder the opera-
tion of circuit breakers and protective devices and may result 
in the flow of low magnitude long duration fault current.  
Failure of joints in rigid gas piping, to gas valves in appliances 
and arc damage to thin-walled gas pipes are the occasional 
result of these events. 

IX. CONCLUSIONS 
Lightning fires ignited by direct lightning strikes to the 

structure may be substantially eliminated by the installation of 
a properly designed and installed lightning protection system.  
Since these are installed on few residences in the USA, 
lightning fires from direct strikes will continue to occur at an 
increasing rate.  However, structures equipped with a lightning 
protection system will still experience some indirect lightning 
effects. 
 

The electrical energy entering residences from indirect 
strikes is insufficient to directly ignite fires.  The evidence 
points to the majority of fires triggered by indirect lightning to 
be the result of damage to the electrical power system in the 
residence.  Damage to other services, such as water and gas 
lines, is likely the result of the electrical fault currents and not 
caused by the indirect lightning energy itself. 

    
 Mitigation of damage from both direct and indirect 

lightning strikes may be achieved by a number of techniques, 
including: 

1. Grounding and bonding of metallic roof penetra-
tions, such as vents and chimney flues 

2. Equipotential bonding of all services close to the 
entry point in the building (including gas lines)   

3. Use of ground-fault leakage relays on equipment 
that may provide other paths for fault current. 

It is strongly recommended that the appropriate US Code 
Committees address the gap in grounding and bonding by en-
suring that both: 

1. Residences exposed to and vulnerable to 
lightning damage are provided with at least a 
minimal lightning protection system. 

2. Equipotential bonding is applied to all metallic 
services entering or leaving a structure. 
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